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Computation of a Turbulent Natural Convection in a 
Rectangular Cavity with the Low-Reynolds-Number 

Differential Stress and Flux Model 

Seok-Ki Choi*, Eui-Kwang Kim, Myung-Hwan Wi, Seong-O Kim 
Korea Atomic Energy Research Institute, 

Fluid System Engineering Division, 

150 Deokjin-dong, Yuseong-gu, Daejeon, 305-353, Korea 

A numerical study of a natural convection in a rectangular cavity with the low-Reynolds-  

number differential stress and flux model is presented. The primary emphasis of the study is 

placed on the investigation of the accuracy and numerical stability of the low-Reynolds-number 

differential stress and flux model for a natural convection problem. The turbulence model 

considered in the study is that developed by Peeters and Henkes (1992) and further refined by 

Dol and Hanjalic (2001), and this model is applied to the prediction of a natural convection 

in a rectangular cavity together with the two-layer model, the shear stress transport model and 

the time-scale bound v2- - f  modeI, all with an algebraic heat flux model. The computed results 

are compared with the experimental data commonly used for the validation of the turbulence 
models. It is shown that the low-Reynolds-number differential stress and flux model predicts 

well the mean velocity and temperature, the vertical velocity fluctuation, the Reynolds shear 

stress, the horizontal turbulent heat flux, the local Nusselt number and the wall shear stress, but 

slightly under-predicts the vertical turbulent heat flux. The performance of the v-~--f model is 

comparable to that of the low-Reynolds-number differential stress and flux model except for the 

over-prediction of the horizontal turbulent heat flux. The two layer model predicts poorly the 

mean vertical velocity component and under-predicts the wall shear stress and the local Nusselt 

number. The shear stress transport model predicts well the mean velocity, but the general 

performance of  the shear stress transport model is nearly the same as that of  the two-layer 

model, under-predicting the local Nusselt number and the turbulent quantities. 

Key Words : Turbulent Natural Convection, Two-Layer  Model. Shear Stress Transport Model, 

v2 - - f  Model, Low-Reynolds-Number  Differential Stress And Flux Model 

Nomenclature 
g~ ~ Gravitational acceleration 

Gk : Buoyancy generation term 

H ; Height of the cavity 

h : Heat transfer coefficient 

k : Turbulent kinetic energy 
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kl  ~ Conductivity of fluid 
L : Width of the cavity 
nl ; i - th  component of normal vector at the 

wall 
N u  ~ Nusseh number 
p : Pressure 
Pk ~ Generation term of turbulent kinetic ener- 

gY 
/Do : Generation term of temperature variance 
P r  : Prandtl number 
Pr8 : Turbulent Prandtl  number 
R a  : Rayleigh number 

1 pk  2 \ 
/Yr ' Turbulent Reynolds number ( - -  } 

\ 
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t ; Time 

T : Time scale 

Ui : Cartesian velocity components 

uiu~ : Reynolds stresses 

• Wall friction velocity { =/~-~ [ OUe I ~x,z~ U~ \ \ 0 1 0 x .  Iw/ / 
xi : Cartesian Coordinates 

xn ; Normal distance from the wall 

x~ + :Dimensionless normal distance from the 

w a l l (  - pU~xn ) 
Iz 

Greeks 
fl : Gas expansion coefficient 

An  : Normal distance from the wall 

e : Dissipation rate of turbulent kinetic energy 

e0 Dissipation rate of temperature fluctuation 

/z Dynamic viscosity 

,ui~ Pseudo eddy-viscosity for momentum eq- 

uations 

¢tf Pseudo eddy-viscosity for energy equation 

/Zr Turbulent eddy viscosity 

u Kinematic viscosity 

p Density 

69 : Temperature 

Oui : Turbulent heat fluxes 
02 " Temperature variance 

Subscripts 
H : Pertaining to hot wall 

e : Pertaining to dissipation rate of turbulent 

kinetic energy 

0 : Pertaining to temperature 

Superscripts 
N - 1  : Pertaining to previous iteration level 

M : Pertaining to momentum equation 
T : Pertaining to energy equation 

1. Introduct ion 

Accurate prediction of a natural convection is 

very important for investigating the fluid flow and 
heat transfer in various engineering applications 

such as a reactor vessel auxiliary cooling system 

in a liquid metal reactor, solar collectors and ele- 

ctronic equipment cooling. The natural convec- 

tion also plays a very important role in thermal 
stratification such as that in the upper plenum of 

a liquid metal reactor during the scram condition. 

Despite its importance in practical engineering 

problems, turbulent natural convection has re- 

ceived attention only from a few researchers. 

There exist little experimental data to validate the 

computer codes, mainly due to experimental dif- 

ficulties. It is still difficult to measure the low 

velocity and to achieve the ideal adiabatic condi- 

tion. The experimental data by Tsuji and Nagano 

(1987) for a heated vertical plate, by Betts and 

Bokhari (2000) for a tall cavity, by King (1989) 

and Cheesewright et al. (1986) for a rectangular 

cavity, and by Tian and Karayiannis (2000) and 

Ampofo and Karayiannis (2003) for a square 

cavity are examples of experimental data which 

have been used by many authors to test turbulence 

models or to validate their computer codes. The 

LES (Large Eddy Simulation) by Peng and Da- 

vidson (2001) for a natural convection in a 

square cavity for the experiment by Tian and 

Karayiannis (2000) and the DNS (Direct Nu- 

merical Simulation) by Boudjemadi et al. (1997) 

and by Versteegh and Nieuwstadt (1998) are 

examples of the LES and DNS studies reported in 

the literatures. Most works in the literature 

employ the RANS (Reynolds Averaged Navier-  

Stokes) equation approach. In the RANS equa- 

tion approach, the choice of a turbulence model is 

crucial, as it directly affects the accuracy of the 

solutions. However, the turbulence modeling of a 

natural convection is still difficult and the 

rationale for the difficulties is well explained in 

Hanjalic (2002) and Dol et al. (1997). 

One of the difficulties of the computation of a 

natural convection by the conventional k - e  
model is the validity of the wall function method, 

which is based on the local equilibrium logari- 

thmic velocity and temperature assumptions. The 

logarithmic wall functions were originally deri- 

ved for the forced-convection flows and do not 

hold for natural convection boundary layers. Due 

to this problem, most previous authors used the 

low-Reynolds-number turbulence models for a 

computation of the natural convection problems, 

for example, Henkes et al. (1991). The other di- 

fficulty in predicting the turbulent natural con- 
vection is the treatment of the turbulent heat 
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fluxes. If  one does not use the differential flux 

model, a proper way of treating the turbulent 

fluxes should be sought, lnce and Launder (1989) 

explained that the simple gradient formulation is 

not a proper way of treating the turbulent heat 

fluxes and proposed a generalized gradient for- 

mulation. However, Kenjeres (1998) has shown 

that the algebraic flux model developed by Han- 

jatic and Kenjeres (1995) results in better solu- 

tions than the generalized gradient formulation 

for a turbulent natural convection in a rectangul- 

ar cavity. A good feature of the algebraic heat flux 

model developed by Hanjalic and Kenjeres (1995) 

is its simplicity, it requires only one additional 

solution of the transport equation for a tempera- 

ture variance. The main difference between this 

model and the general gradient diffusion hypoth- 

esis proposed by Ince and Launder (1989) is the 

inclusion of the temperature variance term in the 

algebraic expression of the turbulent heat fluxes. 

The use of this model is attractive due to its 

simplicity of implementation and high perform- 

ance. This algebraic flux model (AFM hereafter) 

will be used in the present study for the com- 

putation of a natural convection in a rectangular 

cavity together with the two-layer model by Chen 

and Patel (1988), the shear stress transport model 

(SST hereafter) by Menter (1994) and the time- 

scale bound v2--f  (V2-f hereafter) model by 

Medic and Durbin (2002). During the course of 

the present study, we find that the performance of 

the A F M  depends much on the constants in the 

algebraic expressions of the turbulent heat fluxes, 

and the optimal values of the constants differ for 

different turbulence models and flow conditions. 

In the present study a systematic numerical ex- 

periment is conducted to obtain the optimal val- 

ues of the constants for all the models considered 

in the present study for the calculation of the 

experiment by King (1989) and Cheesewright et 

al. (1986) for a rectangular cavity. 

It can be commonly accepted that the use of the 

second-moment closure may result in better 
solutions for a natural convection in enclosures, 

however, the second-moment modeling of a nat- 
ural convection requires the modeling of various 

terms in the transport equations for the turbulent 

heat flux vector, the temperature variance and the 

dissipation rate of the temperature variance, and 

its use in practical engineering problems is still 

questionable due to its complexity and demand of 

high computer resources. For  the force convection 

flows, Lai and So (1990), Shikazo and Kasagi 

(1996) and Shin et al. (1993) have developed the 

near-wall  second moment closures. There are a 

few works for the near-wall  second moment 

models for the turbulent natural convection flows. 

Dol and Hanjalic (2001) performed two and 

three dimensional calculations for the experi- 

ments conducted by Opstelten (1994) and Dol et 

al. (2000) using the second-moment closure by 

Peeters and Henkes (1992), however, a limited 

success is reported although they showed that the 

second moment closures predict better than the 

conventional low-Reynolds-number  k - e  model. 

It is not clearly understood whether their limited 

success is due to a turbulence modeling problem 

or others, such as experimental or numerical 

errors. They do not show the results for the im- 

portant heat transfer parameters such as the local 

Nusselt number and the turbulent heat fluxes. In 

the present study we perform two-dimensional 

calculations using the same turbulence model, but 

for a different experiment by King (1989) and 

Cheesewright et al. (1986) for a rectangular cavi- 

ty. The computed results by the two-layer model, 

the SST model and the V2-f model are also 

included for comparison purposes. The results of 

this kind of study may contribute to understand- 

ing the success and limit of the current second- 

moment closures for a turbulent natural convec- 

tion in enclosures. 

In the following chapters, first a brief outline of 

the numerical issues for using the second-moment 

closures is presented. Then, the computed results 

for four different turbulence models are presented, 

followed by the conclusions drawn from the 

present study 

2. Mathemat ica l  Formulation 

2.1 Governing equations 
The Reynolds averaged governing equations 

for the mass conservation, momentum conservati- 
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on, energy conservation and the transport equa- 

tions for the turbulent quantities in the low- 

Reynolds-number differential stress and flux 

model by Peeters and Henkes (1992) (SMC-PH 

hereafter) and further refined by Dol and 

Hanjalic (2001), can be written as follows ; 

D 
Dt (p) = 0  (l)  

D 01) O OUi - -  
Dt ( p U i ) = - ~ + ~ ( / Z ~ x f - p u , u s )  (2) 

O(#aO ) 
D ( p O ) = ~ -  Pr  8xs p ~  (3) Dt 

Dt (p~u~) = #Ski+ Cspuku, (4) 

+ (Pi~+ Ge~+~ij-peij+Ei~) 

D 8 k 8e 

(5) 
+~( C~ff ~ (Ph + C~3Gk)- Caofas) + E~ 

+ (P{o +PS~o + Gio+¢io+E,o) 

D _ 8 # k 802 

+ (2Po-20so+2Eo) 

_ 8 ~ k Oeo 
D (P6O) -- ~ [  ( ~Skt + Ce°p UkUl~ )~ l  J (8) 

8o 6o + (C~le.- C~loe~)-U+ (C~Pk- Co2oe) T 

The definitions of the variables and the values 

of the constants in Eqs. (4)-  (8) are given in the 

Appendix. The details of the two-layer, SST and 

V2-f models used in the present study are given in 

Choi (2003). When the time scale-bound two- 

layer model, which is given in Medic and Durbin 

(2002), is used, there exists a sharp variation near 

the peak region for the turbulent heat fluxes, thus 

the conventional two-layer model is used in the 

present study. It is noted that in the three turbu- 

lence models except for the SMC-PH model, the 

turbulent heat fluxes are calculated using the 

following assumption in the A F M  by Hanjalic 
and Kenjeres (1995); 

- -  T - - 8 0  Ou,=-~(uiu, -~+ ( l -  Crz)0-'~k'~ q - (l-Cn)/~g, fff) (9) 

where T is the time-scale defined differently for 

the different models and can be seen in Choi 

(2003). The constants in Eq. (9) are not univer- 

sal and are used differently by authors, see 

Kenjeres (1998), Hanjalic (2002) and Kenjeres 

and Hanjalic and (1995). As explained before a 

numerical experiment is conducted to obtain the 

optimal values for all the models for the calcula- 

tion of the test problem in the present study. The 

Reynolds stresses in Eq. (9) are calculated by the 

following simple gradient formula. 

2 [ OUi, OUs \ 
u,u~=~k~,~- u~ k ~ 7 * ~ Z ]  (lO) 

2.2 Boundary conditions 
At the wall a no slip boundary condition is 

imposed for the velocity components, and the 

isothermal and adiabatic wall boundary condi- 

tions are imposed for the temperature. The 

Reynolds stresses, the turbulent heat fluxes and 

the temperature variance are zero at the wall. In 

the SMC-PH model the dissipation rate of the 

turbulent kinetic energy and the dissipation rate 

of the temperature fluctuation are also zero at the 

solid wall. 

3. Numerical  Method 

The most important issues for preserving a 

numerical stability in using the second-moment 

closure may be the introduction of the pseudo 

eddy-viscosities in the momentum and energy 

equations. The non-staggered grid method is used 

in the present study, and the introduction of the 

pseudo eddy-viscosities in the non-staggered grid 

configuration is well documented in Lien and 

Leschziner (1991). A brief outline of  it is prese- 

nted here. The momentum and energy equa- 

tions, Eq. (2) and Eq. (3), can be written in the 

following forms by introducing the pseudo eddy- 
viscosities. 

D 8p 818 u 8Ui \ u,) = - p & ,  ( e  - 

8 / - - ,  MaUi\~-I 
(11) 
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D (pO) 8 / /  /~ + ~r\06)\ 
Dt = ~ t ~ f f r  /4]ff~j] 

0 T O 0  - -  N - '  g};( / z j~+  oOuj ) 
(12) 

where the pseudo eddy-viscosities are defined as 

follows ; 

2-~Cz+~C2Cw2(4fi+f~) k - -  (13) 
12~= C,+2Cwtfi pTu~us i=j 

1-Cz+ 3 C2Cw2(fi+ fs) k - -  
,u,Ms - -pTumo i#:j (14) 

C, + 3 Cwl(/,+ f~) 

1 k - -  
Co, (1 + Cow~j) P ~  usus 

j : no-summation 
(15) 

and 

k3/2 
/ ,=  n~ eC,An (16) 

The superscript N -  1 in Eqs. (11) - (12) deno- 

tes the previous iteration value calculated by a 

deferred correction method. It should be noted 

that the introduction of the pseudo eddy-vis- 

cosities depends on the turbulence model used 

and the pseudo eddy-viscosities introduced in 

Eqs. (13)-(15) which are based on the SMC-PH 

model. With the above introduction of  the pseudo 

eddy-viscosities and a proper source term lin- 

earization, no numerical stability problems are 

encountered. When the conventional steady state 

solution method is used, a numerical oscillation 

occurs, thus the unsteady time marching tech- 

nique is employed with a suitable time step, typi- 

cally At=0.1 sec. 

The turbulence models considered in the pre- 

sent study are implemented in the computer code 

especially designed for the evaluation of the tur- 

bulence models. The computer code employs the 

non-staggered grid arrangement and the SIMPLE 
algorithm (Patankar, 1980) for the pressure-velo- 

city coupling. The second-order bounded HLPA 

scheme (Zhu, 1991), which is the same as the Van- 

Leer's CLAM (Van Leer, 1974) scheme, is used 

for treating the convection terms. 

4. Test  Problem 

As explained before, the experimental data by 

Tsuji and Nagano (1987) for a heated vertical 

plate, by Betts and Bokhari (2000) for a tall 

cavity, by King (1989) and Cheesewright et al. 

(1986) for a rectangular cavity, and by Tian and 

Karayiannis (2000) and Ampofo and Karayi- 

annis (2003) for a square cavity are the typical 

experimental data which have been used by many 

authors to test the turbulence models. It is shown 

that the natural convection in a heated vertical 

plate experimented by Tsuji and Nagano (1987) 

is rather accurately calculated by Launder and 

Sharma model (1974) with A F M  (Kenjeres, 

1998), by V2-fmodel  (Tieszen et al., 1998) or by 

SMC-PH model (Peeters and Henkes, 1992). In a 

natural convection in a tall cavity with a 1:28.6 

aspect ratio measured by Betts and Bckhari 

(2000) the two boundary layers near the heated 

and cooled walls interact and the center of the 

cavity is a region of a maximum turbulence. It is 

also shown that this kind of flow can be 

calculated well by the low-Reynolds-number 

turbulence model (Kenjeres, 1998) or by the two 

-layer model (Hsieh and Lien, 2004). In the 

experiment by Ampofo and Karayiannis (2003) 

for a natural convection in a square cavity the 

turbulence level is low and the boundary layers 

near the hot and cold vertical walls are very thin 

and most of the cavity is quiescent and thermally 

stratified. The top and bottom walls are the 

conducting walls to avoid the problem of an 

imperfect insulation. It is reported that it is very 

difficult to obtain the steady state converged so- 

lution if the usual low-Reynolds-number turbu- 

lence model is employed (Hsieh and Lien, 2004). 

Due to the weak turbulence of this experiment 

there exists a LES solution by Peng and Davidson 

(2001). An evaluation of the turbulence models 

for this experiment has been recently done by the 

present authors and will be reported elsewhere. 

So far the experiment of King (1989) and Cheese- 

wright et al. (1986) for a natural convection in a 

rectangular cavity with a 1:5 aspect ratio has been 

the most widely used by many authors to test the 
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turbulence models, for example, Ince and Laun- 

der (1989) ,Davidson (1990),Kenjeres (1998),Choi 

et al. (2004) and many others. This experiment 

has a problem in that the upper wall is not 
sufficiently insulated and Ince and Launder 

(1995) showed that a better prediction can be 

made by taking into account the effects of the heat 

loss and three-dimensionality of the flow. The 

turbulence level of this experiment i s higher than 

that of the experiment by Ampofo and Karayi- 

annis (2003) and the LES solution for this prob- 

lem is not yet reported in the literature. Within 

the present author's knowledge, two of the most 

successful computations so far are due to Kenjeres 

(1998) using the Launder and Sharma model 

(1974) and due to Choi et al. (2004) using the V2-f 

model, both with AFM, and nobody has reported 

the computed results using the second-moment 

turbulence model. In the present study a rather 

comprehensive evaluation of turbulence models 

for this problem is done by including the near- 

wall second-moment closure. 

a d i a b a t i c  

Fig. 1 

T=T~ T = ~  

Y 

t___x 
a d i a b a t i c  

A schematic picture of the 5:1 rectangular 
cavity. 

The test problem considered in the present 

study is the natural convection of air in a rectan- 

gular cavity with an aspect ratio of 1:5 as shown 

in Fig. 1. The height of the cavity is H = 2 . 5 m ,  the 
width of the cavity is L = 0 . 5 m  and the tempera- 

ture difference between the hot and cold walls is 

45.8°K. The Rayleigh number based on the height 

of the cavity is R a : 4 . 3 X l 0 1 °  and the Prandtl 

number is Pr=0.7 .  King (1989) has carried out 

extensive measurements for this problem and the 

experimental data are reported in King (1989) 

and Cheesewright et al. (1986). 

5. Resu l t s  and Di scuss ion  

As explained before, the primary objective of 

the present study is the evaluation of the SMC- 

PH model for a natural convection in an enclo- 

sure. The numerical results by the two-layer, SST 

and V2-f models, all with the AFM, are also 

included for comparison. In order to investigate 
the grid dependency of the solution, calculations 

are performed using three different numerical 

grids, 62>(92, 82× 122 and 102)< 152. The nume- 

rical grids are generated using the method given 

in Henkes and Hoogendoorn (1995). Based on 

the calculation using the 102 × 152 grids, the first 

horizontal calculation point at the vertical center 

(y/H----0.5) is located at x+=0.10~0.11 depen- 

ding on the turbulence models used. The inter- 

faces between the two regions in the two-layer 

calculations are placed at a distance from wall 

where [ l - e x p ( - R x / 6 2 . 5 )  ] -~0.95 ( R x = X p ~ / k /  

/2), as is done by Medic and Durbin (2002). We 

found that the initial conditions affect the numer- 

ical stability for the V2-f and SMC-PH models 

calculations. The results of the two-layer model 

are used for the initial conditions for the SMC- 

PH and V2-f models computations. 
Figures 2 (a ) -  (b) show the grid dependency of 

the solutions calculated by the SMC-PH model. 

We observe that the solutions using the 82 × 122 

and 102X152 grids are grid independent indi- 
cating that the numerical grids used in the present 

study are fine enough, and we also observed that 
the solutions by the two-layer, SST and V2-f 
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0.3 ' 

02 ", 

0.1 \ 

o ;  ' o.o~ o.~ o. ,5 0.2  . . . .  o .~5 '  ' ~  ~o.~ 
X/L 

(a) Near wall vertical velocity profiles at y/H=0.5 

1 
\ n . . . . . . . . . . . . . . . . . . . . . . . . . .  

'~, D -- -- -- Gdd: sz*e2 
kA [] . . . . . .  Odd: 02"122 

0,8 % i - -  G~1:122"162 O [ C] King (tg(1O) : HOt Will 
% ~ Z~ K~ (1089) ; COl(~Wldl 

O6 

04 ~,? 

02 

% ~ 20 40 60 80 100 120 140 
L o c a l  N u s s e l t  N u m b e r  

(b) Local Nusselt number profiles along the hot wall 

Fig. 2 Grid dependency test 

models are also grid independent, although they 

are not presented here. The solutions presented in 

the present study are those calculated using the 

finest 102 × 152 numerical grids. 

Dol and Hanjalic (2001) (DH in Figs. 3 ( a ) -  

(b)) proposed the following new way of prescri- 

sbing the Ces in the transport equation for the 

dissipation rate of the turbulence kinetic energy 

(see Appendix).  

C~3=tanh lco t (0 ) l ,  O=~(U~,  gi) (17) 

This way leads to C~3~ 1 in the vertical boun- 

dary layer and C~3~0 in the horizontal flow, with 

a smooth transition in between. We have per- 

formed test calculations to investigate the validity 

of this assumption for the SMC-PH model. Figs. 

3 ( a ) - (b )  show that the treatment of  C~3 by Eq. 

(17) agrees well with the experimental data for a 

natural convection in a 1:5 rectangular cavity 
experimented by Cheesewright et al. (1986) while 

the vertical velocity component at the edge of the 
boundary layer deviates a lot from the experi- 

0 . 3  

0.2 
> 

QM¢..PH (¢e3=1) 
? . . .  i - 7 ~ -  : ' . : .~ .~ , ' . , , ,  

[ . . . .  

0.1 ! rl r ~ O  D 

O0 0.05 0,1 0.15 0.2 ~ ' 0,25 
XIL 

(a) Vertical velocity profiles at y/H=0.5 for 
experiment by Cheesewright et al. (1986). 

0 2 5  

Fig. 3 

i IIMC-PH (CI3sl) 

0051 ? ~  

002 004 006 008 0 1 
X/L 

(b) Vertical velocity profiles at y / H = 0 . 5  for 
experiment by Ampofo (2003). 

Effect of Ce3 on the solution for the SMC-PH 
model. 

015 

0 1  

mental data for a natural convection in a square 

cavity experimented by and Ampofo and 

Karayiannis (2003). We can see that C~3 = 1 is the 

right choice for the usual way done by Ince and 

Launder (1989), Choi et al. (2004) and many 

others. The reason why the treatment of C~3 by 

Eq. (17) produces an accurate solution for a 1:5 

rectangular cavity is that it leads to C~3~ l in a 

nearly whole solution domain except for the re- 

gion near the top and bottom walls. 

Before going into a detailed comparison among 

the different turbulence models a systematic nu- 

merical experiment is conducted to obtain the 

optimal constants of the AFM,  Eq. (9), for the 

turbulence models tested in the present study for 

the experiment conducted by King (1989) and 

Cheesewright et al. (1986). Figures 4-7 show the 

predicted vertical mean velocity and the vertical 
turbulent heat flux for different values of the con- 
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stants in the AFM. We can observe that the solu- 

tions vary much with the constant and the optimal 

constants are different for different turbulence 

models. The optimal constants of the AFM for 

the experiment conducted by King (1989) and 

Cheesewright et al. (1986) are Cr1=4.5 for the 

two-layer model, Cr1=4.0 for the k - c o  model, 

C n = 3 . 0  for the SST model and C n = 7 . 0  for the 

V2-f  model. 

In the initial stage of the present study the k -  

co model was tested as shown in the Fig. 8 and it 

is found that the k - c o  model produces very 
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Comparison of performances of the k-co molel and SST model. 

diffusive solutions at the edge of the boundary 

layer, especially the vertical velocity fluctuation. 

This is a well known defect of the k - - w  model 

and Menter (1994) developed the SST model to 

remove this problem. We can observe that the 

introduction of the SST model removes this 

strange behavior of the k -  co model at the edge of 

the boundary layer although the profile of the 

vertical velocity fluctuation is not smooth at that 

region. Due to this reason the SST model is 

adopted in the present study instead of the k - c o  

model 

Figure 9 and Fig. 10 show the streamlines and 

isotherms predicted by the turbulence models 

considered in the present study. There exist only 

weak interactions between the two boundary 

layers near the hot and cold walls and a rotating 

core. The width of the cavity is large enough to 

establish separate boundary layers at the hot and 

cold walls and the core of the cavity is quiescent 

and thermally stratified. The isotherms predicted 

by the V2-f and SMC-PH models are equally 

spaced, while those by the two-layer and SST 

model are not equally spaced, indicating that the 

vertical centerline temperature distribution is not 

linear. There exists a small gradient of the tem- 

perature across the horizontal direction at the 

center region of the cavity in the prediction of the 

two-layer model, while the temperature distribu- 

tions at the center region are nearly flat in the 

predictions of the V2-f and SMC-PH models. 

The temperature distribution predicted by the 

SMC-PH model near the top and bottom adia- 

batic walls are somewhat different from those by 

the other models. This kind of temperature distri- 

bution near the adiabatic walls was observed first 

in the computation by Dol and Hanjalic (2001) 

(see Fig. 2- (b) of their paper). They explain that 
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the DNS data of  Janssen (1994) and the experi- 

mental data by Opstelten (1994) support quali- 

tatively this kind of  temperature distribution by 

the SMC-PH model. Fig. 11 shows the predicted 

velocity vector near the top wall and it clearly 

shows why the streamlines and isotherms look 
like Fig. 9 and Fig. 10 near the top wall. 

We first compare the predicted results with the 

measured data reported in Cheesewright et al. 

(1986) for the vertical mean velocity and the 

vertical velocity fluctuation at the mid-height  ( y /  

H = 0 . 5 )  of the cavity. Figs. 12 ( a ) - (b )  show the 

comparisons of the predicted results with the 

measured data for the vertical velocity component 

at y / H = 0 . 5 .  As shown in the figures, the agree- 

ment between the measured data and the predic- 

tions by the V2-f  and SMC-PH models is very 

good although there exists a small difference, and 

the two-layer  model poorly predicts it. The SST 

model also predicts well the mean vertical veloci- 

ty component. The two-layer  model produces a 

laminar- l ike solution for the vertical velocity 

component in the near wall region. Choi et al. 

(2004) showed that the laminar- l ike  solution pro- 

duced by the two-layer  model is due to the 

imposition of a smaller value of  the turbulent 

eddy viscosity near the wall, indicating that the 

length scales in the two-layer  model which is ba- 

sed on the forced convection flow should be mo- 

dified for a natural convection flow. Fig. 13 sho- 

ws the comparison of  the predicted vertical ve- 

locity fluctuation at the mid-height  ( y / H = 0 . 5 )  

with the experimental data. It is shown that the 

V2-f and SMC-PH models predict properly the 

vertical velocity fluctuation when compared with 

the measured data. The SMC-PH model slightly 

over-predicts it and the V2-fmodel  slightly under-  

predicts it in the near wall region. It is noted that 

the predictions by the V2-f  and SMC-PH models 

generally follow the trend of  the measured data. 

The two-layer  model slightly under-predicts it in 

the near wall region and over-predicts it at the 
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edge of the boundary layer. This is due to the fact 

that the flow from the edge of the boundary layer 

to the core is quiescent and thermally stratified 
and the conventional k - e  model, which can not 

handle properly the low level turbulence, is used 
to compute the flow and thermal fields in this 

region in the two-layer model. The SST model 

also predicts well the vertical velocity fluctuation, 

1 

/ . . . . . . . . .  TWOli~r 
z '  /" -- -- --  liST 

/ "~/ . . . . .  v2-r 
z / . . . .  IMG-PH 02 t 

f t . . . . . . .  
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Ver t ica l  Center l lne  Tempera tu re  ( C )  

Fig. 14 Vertical centerline temperature profiles at 
x / L =0.5 

but it predicts a little strange abrupt change at the 

edge of the boundary layer and the predicted 

profile is not smooth as shown in the predictions 

by the V2-f  and SMC-PH models. 

Figure 14 shows the comparison of the pre- 

dicted vertical centerline temperature profiles at 

x / L = 0 . 5  with the measured data by King 

(1989). We first note that the measured data of 

the vertical centerline temperature does not show 

the linear variation, and Cheesewright et al. 

(1986) explain that this phenomenon is due to the 

insufficient insulation of the side and upper wails. 

The heat loss from the side and upper walls 

causes the reduction of the temperature, and the 

centerline temperature deviates from the linear 

variation at the upper region of the cavity. The 

predicted results by the V2-f  and SMC-PH 

models clearly exhibit the linear variation while 

the predictions by the two-layer and SST models 

do not show such a trend. The differences be- 

tween the measured data with the predictions by 

the V2-f  and SMC-PH models are believed to be 

due to the insufficient insulation of  the side and 

upper wails, however, the predictions by the V2- f  

and SMC-PH models at the lower region of  the 

cavity agree well with the measured data. 

Figure 15 shows the profiles of  the predicted 

Reynolds shear stress u--v at the mid-plane (y /  
H = 0 . 5 )  of  the cavity together with the measured 

data. The SMC-PH and V2- f  models predict well 
the uv  profile near the hot wall, however, there 

exists a small difference between the measured 

data and the predicted results near the edge of  the 
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boundary layer. The two-layer and SST models 

under-predict  the uv near the hot wall, however, 

the prediction by the SST model follows the trend 

of the experimental data. The two-layer predicts a 

rather diflusive profile at the edge of the boun- 

dary layer which is already observed in the 

predicted result for the vertical velocity fluctua- 

tion shown in Fig. 13. It is interesting to note that 

the predictions of  the turbulent quantities by 

Kenjeres (1998) show a similar trend as the 

present prediction by the two-layer model, while 

the benchmark prediction reported in Henkes and 

Hoogendoorn (1995) follows the trend of the 

predictions by the V2-f  and SMC-PH models. 

Figures 16 (a ) - (b )  show the profiles of the 

predicted turbulent heat fluxes, Ov and 8u, at the 

mid-plane ( y / H = 0 . 5 )  of the cavity with the 

measured data. It is noted that the vertical turbu- 

lent heat flux vector &) plays a very important 

role in the dynamics of the turbulent kinetic 

energy in the buoyant turbulent flows and 

influences directly the overall prediction of  all the 

quantities. The A F M  used in the present study, 

Eq. (9), for the two-layer,  SST and V2-f models 

contains all the temperature and mean velocity 

gradients together with the correlation between 

the gravity vector and temperature variance. All 

the models predict well the vertical turbulent heat 

flux and this is due to the fact that the constant in 

the A F M  have been adjusted to predict accurately 

the vertical turbulent heat flux. The V2-f  and 

SMC-PH models slightly under-predict  the tur- 

bulent heat flux tgz; near the hot wall and the peak 

regions of ~v are skewed a little toward the center 
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Fig. 16 Turbulent heat fluxes profiles at y/H=0.5  

region as shown in Fig. 16- (a). The prediction by 

the SST model also follows well the general trend 

of the measured data. The two-layer model 

predicts well the vertical turbulent heat flux near 

the hot wall region and the peak regions are 

skewed to the hot wall, but the shape of the 

predicted profile is a little thin when compared 

with other predictions. Fig. 16-(b) shows that 

only the SMC-PH model predicts well the hori- 

zontal turbulent heat flux t~u while the other 

models over-predict it. It shows that the A F M  

used in the present study needs some modifi- 

cations. It is noted that the horizontal turbulent 

heat flux does not affect much the solution in the 
present test problem. 

Figure 17 shows the comparison of the pre- 

dicted results with the measured data for the wall 

shear stress at the hot wall reported in King 

(1989). We observe that the V2-f  model predicts 

well the peak value of the wall shear stress at the 

hot wall, but it over-predicts the wall shear stress 
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after the peak region. The general trend of the 

prediction of the wall shear stress by the SMC- 

PH model is the same as the V2-f model and the 

SMC-PH model slightly under-predicts the peak 

value of the wall shear stress. The general trend of 

the predictions by the two-layer and SST models 

is different from that by the V2-f and SMC-PH 

models. It is noted that the prediction by Kenjeres 

(1998) is very similar to the present predictions 

by the V2-f and SMC-PH models. We can ob- 

serve that even the V2-f and SMC-PH models do 

not predict well the laminar to turbulent transi- 

tion at the hot wall observed in the experimental 

data. They predict a smooth transition. It is quite 

interesting to note that the predictions of the 

vertical mean velocity by the V2-f and SMC-PH 

models agree well with the measured data as 

shown in Figs. 12 (a) - (b) ,  but the predictions of 

the wall shear stress at a mid height of the cavity 

(y/H=0.3 0.5) are not satisfactory. Kenjeres 

(1998) explains that the experimental difficulties 

and uncertainties in measuring the velocity very 

close to the wall are most probably one of the 

reasons for the disagreement. Another source of 

disagreement can be the heat losses at the top of 

the cavity, which can cause a deformation of the 

velocity profile along the upper region. 

Figure 18 shows the comparison of the pre- 

dicted results with the measured data for the local 

Nusseh number at the hot wall reported in King 

(1989). The heat transfer coefficient reported in 

King (1989) is based on the centerline tempera- 

ture as follows ; 

90 
hn(lgn-O~) = - k : ~ -  not Watt (18) 

where hH is the heat transfer coefficient at the hot 

wall, ks is the thermal conductivity of the fluid 

and (9= is the temperature at the centerline (x/ 
L=0.5) .  The local Nusselt number given in Fig. 

18 is based on the temperature difference between 

the hot and cold walls. Thus, some manipulations 

are made using the experimental data of the cen- 

terline temperature given in Fig. 14. As explained 

above, the measured data of the centerline tem- 

perature do not exhibit the linear variation due to 

an insufficient insulation and this may affect the 

heat transfer coefficient. The V2-f model predicts 

accurately the local Nusselt number at the hot 

wall, and the transition phenomenon at the lower 

portion of the hot wall is also predicted well. The 

SMC-PH model also predicts well the local 

Nusselt number at the hot wall, however, it does 

not predict the laminar to turbulent transition 
observed in the experimental data. The two-layer 

and SST models predict poorly the local Nusselt 

number at the hot wall. The two-layer and SST 

models also do not predict the transition pheno- 
menon. Kenjeres (1998) under-predicts the local 

Nusselt number at the hot wall and the predicted 

transition is weak and delayed (y/H=0.26) 
when compared with the experimental data (y/ 
H=0.1)  and the present prediction by the V2-f 

model (y/H=O. 12). 

5. Conclusions  

The SMC-PH model and three different turbu- 
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lence models such as the two-layer model, the 

SST model and the V2-f model, all with the 

algebraic heat flux model, are tested for a natural 

convection in a rectangular cavity with isothermal 

and adiabatic walls. The primary emphasis of the 

present study is placed on the evaluation of the 

SMC-PH model for a natural convection prob- 

lem. The optimal constants in the algebraic flux 

model for the two-layer, SST and V2-f models 

are sought by a systematic numerical experiment. 

The performances of the turbulence models are 

investigated through a comparison with the av- 

ailable experimental data. The following con- 

clusions may be drawn from the present study ; 

(1) The two-layer model predicts poorly the 

mean vertical velocity and turbulent quantities 

such as the turbulent stresses and the turbulent 

heat fluxes, thereby, the wall shear stress and the 

local Nusselt number. This model predicts the 

diffusive solutions near the edge of the boundary 

layer to the center region. The length scales in the 

two-layer model formulation, which are based on 

the forced convection flow, should be modified to 

improve the prediction for the natural convection 

flows. 

(2) The overall performance of the SST model 

is slightly better than that of the two-layer model, 

and this model also under-predicts the local 

Nusseh number and the wall shear stress at the 

hot wall. But this model avoids the diffusive 

solutions near the edge of the boundary layer to 

the center region. 

(3) The general performance of the V2-f model 

is as good as that of the SMC-PH model and 

predicts well the laminar to turbulent transition, 

however, this V2-f, SST and two-layer models 

over-predict the horizontal turbulent heat flux 

when used with the algebraic heat flux model. 

(4) The SMC-PH model predicts well for 

nearly all the quantities considered in the present 

study. This model is numerically very stable and 

shows a good convergence. One drawback of this 

model is its implementation in the flows with a 

complex geometry since this model involves many 

the wall related parameters. 

As a concluding remark, the general perfor- 

mances of the SMC-PH model are much better 

than the two-layer and SST models based on the 

algebraic flux model. The V2-f model based on 

the algebraic flux model shows a very similar 

performance to the SMC-PH model. The alge- 

braic flux model works well for the present test 

problem, but the optimal values of the constants 

in the algebraic flux model depend on the turbu- 

lence model used and the flow conditions. Thus, 

a modification of the algebraic flux model is 

needed for a better prediction of the natural 

convection in an enclosure. The V2-f type model 

should be extended to thermal flows to avoid 

using the algebraic flux model. Such a work is 

shown in the literature recently by Shin et al. 

(2004). 
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A p p e n d i x  
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Cs=0.20, C~=0.15, Cou=0.20, Coo=0.22, C~o=0.22 
Cel= 1.35, Cea = 1.80, CCa= 1 
C~=2.2, C2=0.55, Ca=0.55, Cw,=0.6, Cwa:O.3, Cl=2.53 
Co~=3.75, Co2=0.5, Coa=0.5, Cow:O.2 
Cm = 1.8, Ce2=0.72, Cm-2.2, CDa=0.8 




